Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Bioinformatics ; 39(2)2023 02 03.
Article in English | MEDLINE | ID: covidwho-2311589

ABSTRACT

MOTIVATION: Predicting molecule-disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule-molecule, molecule-disease and disease-disease semantic dependencies can potentially improve prediction performance. METHODS: We introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations (M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients. Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding space shared by drugs, diseases and other common clinical concepts. To infer molecule-disease relations, M2REMAP combines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects. RESULTS: We extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP overcomes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/celehs/M2REMAP, and prediction results are provided at https://shiny.parse-health.org/drugs-diseases-dev/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Humans , Drug Development , Electronic Health Records , Neural Networks, Computer , Pharmacovigilance
2.
J Biomed Inform ; 133: 104147, 2022 09.
Article in English | MEDLINE | ID: covidwho-1959659

ABSTRACT

OBJECTIVE: The growing availability of electronic health records (EHR) data opens opportunities for integrative analysis of multi-institutional EHR to produce generalizable knowledge. A key barrier to such integrative analyses is the lack of semantic interoperability across different institutions due to coding differences. We propose a Multiview Incomplete Knowledge Graph Integration (MIKGI) algorithm to integrate information from multiple sources with partially overlapping EHR concept codes to enable translations between healthcare systems. METHODS: The MIKGI algorithm combines knowledge graph information from (i) embeddings trained from the co-occurrence patterns of medical codes within each EHR system and (ii) semantic embeddings of the textual strings of all medical codes obtained from the Self-Aligning Pretrained BERT (SAPBERT) algorithm. Due to the heterogeneity in the coding across healthcare systems, each EHR source provides partial coverage of the available codes. MIKGI synthesizes the incomplete knowledge graphs derived from these multi-source embeddings by minimizing a spherical loss function that combines the pairwise directional similarities of embeddings computed from all available sources. MIKGI outputs harmonized semantic embedding vectors for all EHR codes, which improves the quality of the embeddings and enables direct assessment of both similarity and relatedness between any pair of codes from multiple healthcare systems. RESULTS: With EHR co-occurrence data from Veteran Affairs (VA) healthcare and Mass General Brigham (MGB), MIKGI algorithm produces high quality embeddings for a variety of downstream tasks including detecting known similar or related entity pairs and mapping VA local codes to the relevant EHR codes used at MGB. Based on the cosine similarity of the MIKGI trained embeddings, the AUC was 0.918 for detecting similar entity pairs and 0.809 for detecting related pairs. For cross-institutional medical code mapping, the top 1 and top 5 accuracy were 91.0% and 97.5% when mapping medication codes at VA to RxNorm medication codes at MGB; 59.1% and 75.8% when mapping VA local laboratory codes to LOINC hierarchy. When trained with 500 labels, the lab code mapping attained top 1 and 5 accuracy at 77.7% and 87.9%. MIKGI also attained best performance in selecting VA local lab codes for desired laboratory tests and COVID-19 related features for COVID EHR studies. Compared to existing methods, MIKGI attained the most robust performance with accuracy the highest or near the highest across all tasks. CONCLUSIONS: The proposed MIKGI algorithm can effectively integrate incomplete summary data from biomedical text and EHR data to generate harmonized embeddings for EHR codes for knowledge graph modeling and cross-institutional translation of EHR codes.


Subject(s)
COVID-19 , Electronic Health Records , Algorithms , Humans , Logical Observation Identifiers Names and Codes , Pattern Recognition, Automated
3.
Diagn Microbiol Infect Dis ; 104(2): 115770, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1936297

ABSTRACT

Feasibility of home blood sample collection methods for the presence of SARS-CoV-2 antibodies from VA Million Veteran Program (MVP) participants was tested to determine COVID-19 infection or vaccination status. Participants (n = 312) were randomly assigned to self-collect blood specimens using the Neoteryx Mitra Clamshell (n = 136) or Tasso-SST (n = 176) and asked to rate their experience. Mitra tip blood was eluted and Tasso tubes were centrifuged. All samples were stored at -80 °C until tested with InBios SCoV-2 Detect™ IgG ELISA, BioRad Platelia SARS-CoV-2 Total Ab Assay, Abbott SARS-CoV-2 IgG and AdviseDx SARS-CoV-2 IgG II assays. Participants rated both devices equally. The Abbott assay had the highest sensitivity (87% Mitra, 98% Tasso-SST) for detecting known COVID infection and/or vaccination. The InBios assay with Tasso-SST had the best sensitivity (97%) and specificity (80%) for detecting known COVID-19 infection and/or vaccination. Veterans successfully collected their own specimens with no strong preference for either device.


Subject(s)
COVID-19 , Veterans , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests/methods
4.
JAMA Intern Med ; 182(8): 796-804, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1905752

ABSTRACT

Importance: Sickle cell trait (SCT), defined as the presence of 1 hemoglobin beta sickle allele (rs334-T) and 1 normal beta allele, is prevalent in millions of people in the US, particularly in individuals of African and Hispanic ancestry. However, the association of SCT with COVID-19 is unclear. Objective: To assess the association of SCT with the prepandemic health conditions in participants of the Million Veteran Program (MVP) and to assess the severity and sequelae of COVID-19. Design, Setting, and Participants: COVID-19 clinical data include 2729 persons with SCT, of whom 353 had COVID-19, and 129 848 SCT-negative individuals, of whom 13 488 had COVID-19. Associations between SCT and COVID-19 outcomes were examined using firth regression. Analyses were performed by ancestry and adjusted for sex, age, age squared, and ancestral principal components to account for population stratification. Data for the study were collected between March 2020 and February 2021. Exposures: The hemoglobin beta S (HbS) allele (rs334-T). Main Outcomes and Measures: This study evaluated 4 COVID-19 outcomes derived from the World Health Organization severity scale and phenotypes derived from International Classification of Diseases codes in the electronic health records. Results: Of the 132 577 MVP participants with COVID-19 data, mean (SD) age at the index date was 64.8 (13.1) years. Sickle cell trait was present in 7.8% of individuals of African ancestry and associated with a history of chronic kidney disease, diabetic kidney disease, hypertensive kidney disease, pulmonary embolism, and cerebrovascular disease. Among the 4 clinical outcomes of COVID-19, SCT was associated with an increased COVID-19 mortality in individuals of African ancestry (n = 3749; odds ratio, 1.77; 95% CI, 1.13 to 2.77; P = .01). In the 60 days following COVID-19, SCT was associated with an increased incidence of acute kidney failure. A counterfactual mediation framework estimated that on average, 20.7% (95% CI, -3.8% to 56.0%) of the total effect of SCT on COVID-19 fatalities was due to acute kidney failure. Conclusions and Relevance: In this genetic association study, SCT was associated with preexisting kidney comorbidities, increased COVID-19 mortality, and kidney morbidity.


Subject(s)
Acute Kidney Injury , COVID-19 , Sickle Cell Trait , Acute Kidney Injury/complications , Acute Kidney Injury/epidemiology , Black or African American/genetics , COVID-19/epidemiology , Hemoglobins , Humans , Kidney , Sickle Cell Trait/complications , Sickle Cell Trait/epidemiology , Sickle Cell Trait/genetics
5.
JAMA Intern Med ; 182(7): 739-746, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1888469

ABSTRACT

Importance: The risk of adverse events has been found to be low for participants receiving the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna Inc) vaccines in randomized trials. However, a head-to-head comparison of their safety for a broader range of potential adverse events over longer follow-up and in larger and more diverse populations is lacking, to our knowledge. Objective: To compare the head-to-head safety in terms of risk of adverse events of the BNT162b2 and mRNA-1273 vaccines in the national health care databases of the US Department of Veterans Affairs, the largest integrated health care system in the US. Design, Setting, and Participants: In this cohort study, the electronic health records of US veterans who received a first dose of the BNT162b2 or mRNA-1273 vaccine between January 4 and September 20, 2021, were used. Recipients of each vaccine were matched in a 1:1 ratio according to their risk factors. Exposures: Vaccination with either the BNT162b2 vaccine, with a second dose scheduled 21 days later, or the mRNA-1273 vaccine, with a second dose scheduled 28 days later. Main Outcomes and Measures: A large panel of potential adverse events was evaluated; the panel included neurologic events, hematologic events, hemorrhagic stroke, ischemic stroke, myocardial infarction, other thromboembolic events, myocarditis or pericarditis, arrhythmia, kidney injury, appendicitis, autoimmune events, herpes zoster or simplex, arthritis or arthropathy, and pneumonia. Risks over 38 weeks were estimated using the Kaplan-Meier estimator. Results: Among 433 672 persons included in the matched vaccine groups, the median age was 69 years (IQR, 60-74 years), 93% of individuals were male, and 20% were Black. Estimated 38-week risks of adverse events were generally low after administration of either the BNT162b2 or the mRNA-1273 vaccine. Compared with the mRNA-1273 group, the BNT162b2 group had an excess per 10 000 persons of 10.9 events (95% CI, 1.9-17.4 events) of ischemic stroke, 14.8 events (95% CI, 7.9-21.8 events) of myocardial infarction, 11.3 events (95% CI, 3.4-17.7 events) of other thromboembolic events, and 17.1 events (95% CI, 8.8-30.2 events) of kidney injury. Estimates were largely similar among subgroups defined by age (<40, 40-69, and ≥70 years) and race (Black, White), but there were higher magnitudes of risk differences of ischemic stroke among older persons and White persons, kidney injury among older persons, and other thromboembolic events among Black persons. Small-magnitude differences between the 2 vaccines were seen within 42 days of the first dose, and few differences were seen within 14 days of the first dose. Conclusions and Relevance: The findings of this cohort study suggest that there were few differences in risk of adverse events within 14 days of the first dose of either the BNT162b2 or the mRNA-1273 vaccine and small-magnitude differences within 42 days of the first dose. The 38-week risks of adverse events were low in both vaccine groups, although risks were lower for recipients of the mRNA-1273 vaccine than for recipients of the BNT162b2 vaccine. Although the primary analysis was designed to detect safety events unrelated to SARS-CoV-2 infection, the possibility that these differences may partially be explained by a lower effectiveness of the BNT162b2 vaccine in preventing the sequelae of SARS-CoV-2 infection compared with the mRNA-1273 vaccine could not be ruled out. These findings may help inform decision-making in future vaccination campaigns.


Subject(s)
COVID-19 , Ischemic Stroke , Myocardial Infarction , Veterans , 2019-nCoV Vaccine mRNA-1273 , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Female , Humans , Male , SARS-CoV-2 , mRNA Vaccines
6.
PLoS Genet ; 18(4): e1010113, 2022 04.
Article in English | MEDLINE | ID: covidwho-1817364

ABSTRACT

The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n = 35) or hospitalization (n = 42) due to severe COVID-19 using genome-wide association summary data from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (nrs495828 = 53 and nrs505922 = 59); strongest association with venous embolism, odds ratio (ORrs495828 1.33 (p = 1.32 x 10-199), and thrombosis ORrs505922 1.33, p = 2.2 x10-265. Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p = 4.12 × 10-191; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p = 2.26× 10-12. The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p = 6.48 x10-23, lupus OR 0.84, p = 3.97 x 10-06. PheWAS stratified by ancestry demonstrated differences in genotype-phenotype associations. LMNA (rs581342) associated with neutropenia OR 1.29 p = 4.1 x 10-13 among Veterans of African and Hispanic ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets.


Subject(s)
COVID-19 , Veterans , COVID-19/epidemiology , COVID-19/genetics , Genetic Association Studies , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics
7.
PLoS One ; 17(4): e0266381, 2022.
Article in English | MEDLINE | ID: covidwho-1808561

ABSTRACT

BACKGROUND: In response to the novel Coronavirus Disease 2019 (COVID-19) pandemic, the Department of Veterans Affairs (VA) Million Veteran Program (MVP) organized efforts to better understand the impact of COVID-19 on Veterans by developing and deploying a self-reported survey. METHODS: The MVP COVID-19 Survey was developed to collect COVID-19 specific elements including symptoms, diagnosis, hospitalization, behavioral and psychosocial factors and to augment existing MVP data with longitudinal collection of key domains in physical and mental health. Due to the rapidly evolving nature of the pandemic, a multipronged strategy was implemented to widely disseminate the COVID-19 Survey and capture data using both the online platform and mailings. RESULTS: We limited the findings of this paper to the initial phase of survey dissemination which began in May 2020. A total of 729,625 eligible MVP Veterans were invited to complete version 1 of the COVID-19 Survey. As of October 31, 2020, 58,159 surveys have been returned. The mean and standard deviation (SD) age of responders was 71 (11) years, 8.6% were female, 8.2% were Black, 5.6% were Hispanic, and 446 (0.8%) self-reported a COVID-19 diagnosis. Over 90% of responders reported wearing masks, practicing social distancing, and frequent hand washing. CONCLUSION: The MVP COVID-19 Survey provides a systematic collection of data regarding COVID-19 behaviors among Veterans and represents one of the first large-scale, national surveillance efforts of COVID-19 in the Veteran population. Continued work will examine the overall response to the survey with comparison to available VA health record data.


Subject(s)
COVID-19 , Veterans , Aged , COVID-19/epidemiology , COVID-19 Testing , Female , Humans , Male , Mental Health , Surveys and Questionnaires , Veterans/psychology
8.
J Am Geriatr Soc ; 70(9): 2542-2551, 2022 09.
Article in English | MEDLINE | ID: covidwho-1807169

ABSTRACT

BACKGROUND: COVID-19 and influenza are important sources of morbidity and mortality among older adults. Understanding how outcomes differ for older adults hospitalized with either infection is important for improving care. We compared outcomes from infection with COVID-19 and influenza among hospitalized older adults. METHODS: We conducted a retrospective study of 30-day mortality among veterans aged 65+ hospitalized with COVID-19 from March 1, 2020-December 31, 2020 or with influenza A/B from September 1, 2017 to August 31, 2019 in Veterans Affairs Health Care System (VAHCS). COVID-19 infection was determined by a positive PCR test and influenza by tests used in the VA system. Frailty was defined by the claims-based Veterans Affairs Frailty Index (VA-FI). Logistic regressions of mortality on frailty, age, and infection were adjusted for multiple confounders. RESULTS: A total of 15,474 veterans were admitted with COVID-19 and 7867 with influenza. Mean (SD) ages were 76.1 (7.8) and 75.8 (8.3) years, 97.7% and 97.4% were male, and 66.9% and 76.4% were white in the COVID-19 and influenza cohorts respectively. Crude 30-day mortality (95% CI) was 18.9% (18.3%-19.5%) for COVID-19 and 4.3% (3.8%-4.7%) for influenza. Combining cohorts, the odds ratio for 30-day mortality from COVID-19 (versus influenza) was 6.61 (5.74-7.65). There was a statistically significant interaction between infection with COVID-19 and frailty, but there was no significant interaction between COVID-19 and age. Separating cohorts, greater 30-day mortality was significantly associated with older age (p: COVID-19: <0.001, Influenza: <0.001) and for frail compared with robust individuals (p for trend: COVID-19: <0.001, Influenza: <0.001). CONCLUSION: Mortality from COVID-19 exceeded that from influenza among hospitalized older adults. However, odds of mortality were higher at every level of frailty among those admitted with influenza compared to COVID-19. Prevention will remain key to reducing mortality from viral illnesses among older adults.


Subject(s)
COVID-19 , Frailty , Influenza, Human , Veterans , Aged , Female , Frail Elderly , Hospitalization , Humans , Male , Retrospective Studies
9.
JAMA Intern Med ; 182(4): 386-395, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1653126

ABSTRACT

IMPORTANCE: Coronavirus disease 2019 (COVID-19) confers significant risk of acute kidney injury (AKI). Patients with COVID-19 with AKI have high mortality rates. OBJECTIVE: Individuals with African ancestry with 2 copies of apolipoprotein L1 (APOL1) variants G1 or G2 (high-risk group) have significantly increased rates of kidney disease. We tested the hypothesis that the APOL1 high-risk group is associated with a higher-risk of COVID-19-associated AKI and death. DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study included 990 participants with African ancestry enrolled in the Million Veteran Program who were hospitalized with COVID-19 between March 2020 and January 2021 with available genetic information. EXPOSURES: The primary exposure was having 2 APOL1 risk variants (RV) (APOL1 high-risk group), compared with having 1 or 0 risk variants (APOL1 low-risk group). MAIN OUTCOMES AND MEASURES: The primary outcome was AKI. The secondary outcomes were stages of AKI severity and death. Multivariable logistic regression analyses adjusted for preexisting comorbidities, medications, and inpatient AKI risk factors; 10 principal components of ancestry were performed to study these associations. We performed a subgroup analysis in individuals with normal kidney function prior to hospitalization (estimated glomerular filtration rate ≥60 mL/min/1.73 m2). RESULTS: Of the 990 participants with African ancestry, 905 (91.4%) were male with a median (IQR) age of 68 (60-73) years. Overall, 392 (39.6%) patients developed AKI, 141 (14%) developed stages 2 or 3 AKI, 28 (3%) required dialysis, and 122 (12.3%) died. One hundred twenty-five (12.6%) of the participants were in the APOL1 high-risk group. Patients categorized as APOL1 high-risk group had significantly higher odds of AKI (adjusted odds ratio [OR], 1.95; 95% CI, 1.27-3.02; P = .002), higher AKI severity stages (OR, 2.03; 95% CI, 1.37-2.99; P < .001), and death (OR, 2.15; 95% CI, 1.22-3.72; P = .007). The association with AKI persisted in the subgroup with normal kidney function (OR, 1.93; 95% CI, 1.15-3.26; P = .01). Data analysis was conducted between February 2021 and April 2021. CONCLUSIONS AND RELEVANCE: In this cohort study of veterans with African ancestry hospitalized with COVID-19 infection, APOL1 kidney risk variants were associated with higher odds of AKI, AKI severity, and death, even among individuals with prior normal kidney function.


Subject(s)
Acute Kidney Injury , COVID-19 , Veterans , Acute Kidney Injury/genetics , Black or African American/genetics , Aged , Apolipoprotein L1/genetics , Cohort Studies , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors
10.
N Engl J Med ; 386(2): 105-115, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1557219

ABSTRACT

BACKGROUND: The messenger RNA (mRNA)-based vaccines BNT162b2 and mRNA-1273 are more than 90% effective against coronavirus disease 2019 (Covid-19). However, their comparative effectiveness for a range of outcomes across diverse populations is unknown. METHODS: We emulated a target trial using the electronic health records of U.S. veterans who received a first dose of the BNT162b2 or mRNA-1273 vaccine between January 4 and May 14, 2021, during a period marked by predominance of the SARS-CoV-2 B.1.1.7 (alpha) variant. We matched recipients of each vaccine in a 1:1 ratio according to their risk factors. Outcomes included documented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, symptomatic Covid-19, hospitalization for Covid-19, admission to an intensive care unit (ICU) for Covid-19, and death from Covid-19. We estimated risks using the Kaplan-Meier estimator. To assess the influence of the B.1.617.2 (delta) variant, we emulated a second target trial that involved veterans vaccinated between July 1 and September 20, 2021. RESULTS: Each vaccine group included 219,842 persons. Over 24 weeks of follow-up in a period marked by alpha-variant predominance, the estimated risk of documented infection was 5.75 events per 1000 persons (95% confidence interval [CI], 5.39 to 6.23) in the BNT162b2 group and 4.52 events per 1000 persons (95% CI, 4.17 to 4.84) in the mRNA-1273 group. The excess number of events per 1000 persons for BNT162b2 as compared with mRNA-1273 was 1.23 (95% CI, 0.72 to 1.81) for documented infection, 0.44 (95% CI, 0.25 to 0.70) for symptomatic Covid-19, 0.55 (95% CI, 0.36 to 0.83) for hospitalization for Covid-19, 0.10 (95% CI, 0.00 to 0.26) for ICU admission for Covid-19, and 0.02 (95% CI, -0.06 to 0.12) for death from Covid-19. The corresponding excess risk (BNT162b2 vs. mRNA-1273) of documented infection over 12 weeks of follow-up in a period marked by delta-variant predominance was 6.54 events per 1000 persons (95% CI, -2.58 to 11.82). CONCLUSIONS: The 24-week risk of Covid-19 outcomes was low after vaccination with mRNA-1273 or BNT162b2, although risks were lower with mRNA-1273 than with BNT162b2. This pattern was consistent across periods marked by alpha- and delta-variant predominance. (Funded by the Department of Veterans Affairs and others.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Vaccine Efficacy/statistics & numerical data , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/mortality , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Intensive Care Units , Male , Middle Aged , Risk Factors , United States/epidemiology , Veterans
11.
Am J Epidemiol ; 190(11): 2405-2419, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1493668

ABSTRACT

Hydroxychloroquine (HCQ) was proposed as an early therapy for coronavirus disease 2019 (COVID-19) after in vitro studies indicated possible benefit. Previous in vivo observational studies have presented conflicting results, though recent randomized clinical trials have reported no benefit from HCQ among patients hospitalized with COVID-19. We examined the effects of HCQ alone and in combination with azithromycin in a hospitalized population of US veterans with COVID-19, using a propensity score-adjusted survival analysis with imputation of missing data. According to electronic health record data from the US Department of Veterans Affairs health care system, 64,055 US Veterans were tested for the virus that causes COVID-19 between March 1, 2020 and April 30, 2020. Of the 7,193 veterans who tested positive, 2,809 were hospitalized, and 657 individuals were prescribed HCQ within the first 48-hours of hospitalization for the treatment of COVID-19. There was no apparent benefit associated with HCQ receipt, alone or in combination with azithromycin, and there was an increased risk of intubation when HCQ was used in combination with azithromycin (hazard ratio = 1.55; 95% confidence interval: 1.07, 2.24). In conclusion, we assessed the effectiveness of HCQ with or without azithromycin in treatment of patients hospitalized with COVID-19, using a national sample of the US veteran population. Using rigorous study design and analytic methods to reduce confounding and bias, we found no evidence of a survival benefit from the administration of HCQ.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19 Drug Treatment , Hospitalization/statistics & numerical data , Hydroxychloroquine/therapeutic use , Veterans/statistics & numerical data , Aged , Aged, 80 and over , Anti-Bacterial Agents/adverse effects , Azithromycin/adverse effects , COVID-19/mortality , Drug Therapy, Combination , Female , Humans , Hydroxychloroquine/adverse effects , Intention to Treat Analysis , Machine Learning , Male , Middle Aged , Pharmacoepidemiology , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , United States/epidemiology
12.
J Infect Dis ; 224(6): 967-975, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429245

ABSTRACT

BACKGROUND: Early convalescent plasma transfusion may reduce mortality in patients with nonsevere coronavirus disease 2019 (COVID-19). METHODS: This study emulates a (hypothetical) target trial using observational data from a cohort of US veterans admitted to a Department of Veterans Affairs (VA) facility between 1 May and 17 November 2020 with nonsevere COVID-19. The intervention was convalescent plasma initiated within 2 days of eligibility. Thirty-day mortality was compared using cumulative incidence curves, risk differences, and hazard ratios estimated from pooled logistic models with inverse probability weighting to adjust for confounding. RESULTS: Of 11 269 eligible person-trials contributed by 4755 patients, 402 trials were assigned to the convalescent plasma group. Forty and 671 deaths occurred within the plasma and nonplasma groups, respectively. The estimated 30-day mortality risk was 6.5% (95% confidence interval [CI], 4.0%-9.7%) in the plasma group and 6.2% (95% CI, 5.6%-7.0%) in the nonplasma group. The associated risk difference was 0.30% (95% CI, -2.30% to 3.60%) and the hazard ratio was 1.04 (95% CI, .64-1.62). CONCLUSIONS: Our target trial emulation estimated no meaningful differences in 30-day mortality between nonsevere COVID-19 patients treated and untreated with convalescent plasma. Clinical Trials Registration. NCT04545047.


Subject(s)
Blood Component Transfusion , COVID-19/mortality , COVID-19/therapy , Immunization, Passive , Plasma , Adult , Aged , Aged, 80 and over , Female , Hospitalization , Humans , Male , Middle Aged , Treatment Outcome , United States/epidemiology , Veterans , Young Adult , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL